关键特征
● 经典的结构设计,众多的使用客户,超高的性价比;
● 全玻璃材质,从根本上杜绝金属吸附对实验结果造成的误差;
● 专利双七通取样结构(专利号:201120247526.1),杜绝载气误抽;
● 专利磁力循环气泵(专利号:201220011216.4),无电线接入,无氢爆风险。
应用领域 ▲特别适用 ●较为适用 ○可以使用
● 光催化分解水制氢/氧 ● 光催化全分解水 ● 光催化co2还原
● 光降解气体污染物(如vocs 、甲醛、氮氧化物、硫氧化物等)
○ 光催化量子效率测量 ○ 膜光催化 ○ pec光电化学
技术参数
真空度
-0.1 mpa(24 h以上,动态气密性测试);
气密性
相对压力变化:≤1 kpa(24 h);
所有阀门均采用高硼硅玻璃材质,阀塞与阀套采用对磨精磨工艺,保证阀塞与阀套的匹配性;
循环效率
纯磁力高速循环系统:驱动转速>4000 r/min;
内径:循环管路,包括定量环,窄管路内径为3 mm,气体阻力小;
线性及重复性
标准曲线线性回归度:系统内氢气含量为100 μl~10 ml范围时r2 > 0.9995;
同一浓度三次采样,rsd ≤ 3%;
其他结构
定量环为高硼硅玻璃材质,位于多通取样阀上(非色谱取样阀);
不锈钢支撑架,650 mm(l)×370 mm(w)×730 mm(h),高度可调节;
具有多通进/取样器;
真空硅胶软管,抗老化性好、减少系统震动量;
多功能定量缓冲储气瓶装置;(适用系统体积标定和反应气如二氧化碳的存储);
输入输出部分均有光电隔离,抗干扰能力强;
便携式免安装系统;(无需提供氧气、液化气,进行现场明火烧接)。
代表文献
[1] p. li, g. luo, s. zhu, et al., unraveling the selectivity puzzle of h2 evolution over co2 photoreduction using zns nanocatalysts with phase junction, applied catalysis b: environmental, 2020, 274, 119115.
[2] q. zhu, b. qiu, m. du, et al., dopant-induced edge and basal plane catalytic sites on ultrathin c3n4 nanosheets for photocatalytic water reduction, acs sustainable chemistry & engineering, 2020, 8, 7497-7502.
[3] g. huang, z. xiao, w. zhen, et al., hydrogen production from natural organic matter via cascading oxic-anoxic photocatalytic processes: an energy recovering water purification technology, water res, 2020, 175, 115684.
[4] guo w, qin y, liu c, et al. unveiling the intermediates/pathways towards photocatalytic dechlorination of 3,3′,4,4′-trtrachlorobiphenyl over pd /tio2(b) nanosheets[j]. applied catalysis b environmental, 2021, 298:120526.
[5] m. li, j.x. sun, g. chen, s.y. yao, b.w. cong, construction double electric field of sulphur vacancies as medium zns/bi2s3-pvdf self-supported recoverable piezoelectric film photocatalyst for enhanced photocatalytic performance, appl. catal. b: environ. 2022, 31, 120792-120804. httpsdoi.org10.1016j.apcatb.2021.120792.pdf.
[6] z. liu, j. zhang, y. wan, j. chen, y. zhou, j. zhang, g. wang, r. wang, donor-acceptor structural polymeric carbon nitride with in-plane electric field accelerating charge separation for efficient photocatalytic hydrogen evolution, chemical engineering journal 430 (2022) 132725.
[7] yu-qin xing, long chen and shi-yong liu et. al. in situ c-h activation-derived polymer@tio2 p-n heterojunction for photocatalytic hydrogen evolution. sustainable energy fuels, 2021, advance article.
[8] ph-induced hydrothermal synthesis of bi2wo6 nanoplates with controlled crystal facets for switching bifunctional photocatalytic water oxidation/reduction activity, journal of colloid and interface science 602 (2021) 868-879.
[9] yukeshen,dekangli,yuyingdang,jiaweizhang,weiwang,baojunma.a ternary calabash model photocatalyst (pd/mop)/cds for enhancing h2 evolution under visible light irradiation.applied surface science,2021, 150432.
[10] j. cai, a. cao, z. wang, s. lu, z. jiang, x.-y. dong, x. li, s.-q. zang, surface oxygen vacancies promoted pt redispersion to single-atom for enhanced photocatalytic hydrogen evolution. journal of materials chemistry a 2021, doi: 10.1039/d1ta01400e.
[11] enhancing the photocatalytic water splitting of graphitic carbon nitride by hollow anatase titania dielectric resonators. journal of colloid and interface science, 2021, 598, 14-23.
[12] zhu l, wu y, wu s, et al. tuning the active sites of atomically thin defective bi12o17cl2 via incorporation of subnanometer clusters[j]. acs appl. mater. interfaces, 2021.
[13] w. li, x. wang, m. li, s. he, q. ma, x. wang. construction of z-scheme and p-n heterostructure: three-dimensional porous g-c3n4/graphene oxide-ag/agbr composite for high-efficient hydrogen evolution. appl. catal. b-environ. 268 (2020) 118384.
[14] yanbin huang, jun liu, chao zhao et. al. facile synthesis of defect-modified thin-layered and porous g‑c3n4 with synergetic improvement for photocatalytic h2 production. acs appl. mater. interfaces, 2020, 12, 52603−52614.
[15] bin zeng,shengyang wang,yuying gao,guanna li,wenming tian,jittima meeprasert,hao li,huichen xie,fengtao fan,rengui li,can li,interfacial modulation with aluminum oxide for efficient plasmon-induced water oxidation,advanced functional materials,202005688.